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Abstract

The anisotropic Eliashberg formalism, employing results from the ab initio pseudopotential density functional cal-

culations, is applied to study the superconducting properties of MgB2. It is shown that the relatively high transition

temperature of MgB2 originates from strong electron–phonon coupling of the hole states in the boron r-bonds al-

though the coupling strength averaged over the Fermi surface is moderate, and the reduction of the isotope effect arises

from the large anharmonicity of the relevant phonons. The superconducting energy gap is nodeless but its value varies

strongly on different pieces of the Fermi surface. The gap values DðkÞ cluster into two groups at low temperature, a

small value of �2 meV and a large value of �7 meV, resulting in two thresholds in the quasiparticle density of states and

an increase in the specific heat at low temperature due to quasiparticle excitations over the small gap. All of these results

are in good agreement with corresponding experiments and support the view that MgB2 is a phonon-mediated multiple-

gap superconductor.
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1. Introduction

MgB2 is a readily available sp-bonded material

for decades, but superconductivity for this mate-
rial with a transition temperature of Tc ¼ 39 K was

discovered only very recently [1]. Subsequent ex-

perimental studies showed that this material not

only has a much higher Tc than ordinary metallic

superconductors, but also has significantly differ-

ent superconducting properties [2–11]. The ob-

served isotope effect is reduced substantially [2,3]

from the BCS value of 1/2. The average electron–
phonon coupling strength k deduced from normal-

state specific heat measurement [4–7] is found to be

too small to justify the observed high Tc, using

standard formula. In addition, specific heat mea-

surements [4–7], tunneling [8] and photoemission

[9] spectra, and point-contact spectroscopy [10,11]

show low energy excitations suggesting a second-

ary energy gap.
To examine the superconductivity in MgB2,

theoretical calculations based on the BCS theory
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have been performed in great details using calcu-

lation of the electronic and phononic structures

and the electron–phonon interactions [12–18].

MgB2 is a metal with some hole states in the boron

r-bonds, and the Fermi surface consists of four

distinctive pieces [12]. Large anharmonicity is
found in the in-plane B–B stretching modes (E2g)

[13,14], and this anharmonicity is identified as the

origin of the reduced isotope effect [13,15]. The

electron–phonon coupling is dominated by the E2g

modes [12,15–17] and has strong variation on the

Fermi surface [14,15,18]. This strong variation of

the electron–phonon coupling on the Fermi sur-

face is a key feature which must be properly con-
sidered to address the superconductivity of this

material correctly [14,15,19].

The fully anisotropic Eliashberg formalism

[20–22] is a suitable framework to describe the

superconductivity in MgB2 [15,19]. The strong

momentum dependence of the superconducting

energy gap is the origin of anomalies found in the

quasiparticle density of states and the specific heat
[19]. Here we describe the anisotropic Eliashberg

formalism applied to MgB2 and results for the

transition temperature Tc, isotope-effect exponents
a, momentum-dependent superconducting energy

gap DðkÞ, quasiparticle spectra, and specific heat.

Electronic and phononic structures and electron–

phonon interaction necessary for the Eliashberg

equations are obtained by ab initio pseudopoten-
tial density functional calculations [23–26]. The

large anharmonicity of some of the phonon fre-

quencies is also considered in the equations. The

results yield good agreement with corresponding

experiments, providing a consistent physical pic-

ture that MgB2 is a phonon-mediated supercon-

ductor with momentum-dependent values for the

superconducting energy gap.

2. Anisotropic Eliashberg formalism

In this section, we present the anisotropic Eli-

ashberg equations and formulas for the super-

conducting properties such as the transition

temperature, the superconducting energy gap, the

quasiparticle density of states, and the specific heat

[20–22].

We start with the momentum-dependent Eli-

ashberg function for nonnegative frequency x
which is defined by

a2F ðk; k0;xÞ ¼ Nð�FÞ
X
j

jhkjdV j
q jk0ij2dðx 	 xj

qÞ:

ð1Þ
Here Nð�FÞ is the electron density of states per

spin at the Fermi level, jki is the electronic state

labeled by the crystal momentum k, xj
q is the

phonon frequency for the branch j and the wave

vector q ¼ k	 k0, and dV j
q is the difference of the

total self-consistent crystal potential with and

without a frozen phonon. In a self-consistent cal-

culation with a frozen phonon, the atomic dis-

placements are set to be h1jqjxj0jqi which is the

expectation value of the atomic position operator

x between the ground and the first excited phonon

state. When we consider the phonon anharmo-

nicity, j0jqi and j1jqi are the energy eigenstates of
the atomic vibration in the anharmonic potential

and xj
q is the difference of their energy eigenvalues.

The standard isotropic Eliashberg function a2F ðxÞ
is given by

a2F ðxÞ ¼
X
k;k0

WkWk0a
2F ðk; k0;xÞ; ð2Þ

where Wk ¼ dð�F 	 �kÞ=Nð�FÞ. The electron–pho-

non interaction functions kðk; k0; nÞ, kðk; nÞ, and

kðnÞ for integral n and temperature T are

kðk; k0; nÞ ¼
Z 1

0

dxa2F ðk; k0;xÞ 2x

x2 þ ð2npT Þ2
;

ð3Þ

kðk; nÞ ¼
X
k0

Wk0kðk; k0; nÞ; ð4Þ

kðnÞ ¼
X
k

Wkkðk; nÞ: ð5Þ

The standard electron–phonon coupling strength

k in the literature is kðn ¼ 0Þ in the above notation.
Owing to the electron–phonon interaction, the

electron density of states is increased by a factor of

ð1þ kÞ from its bare value so that the electronic

contribution to the specific heat at the normal state
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is CN ¼ cNT with cN ¼ ð2=3Þp2 � k2BNð�FÞð1þ kÞ.
This formula for CN is valid even when the elec-

tron–phonon interaction depends strongly on the

momenta k and k0.

We obtain the transition temperature from

the Eliashberg equations. The anisotropic Eliash-
berg equations at imaginary frequency ixn ¼
ið2nþ 1ÞpT are

Zðk; ixnÞ ¼ 1þ 1

ð2nþ 1Þ
X
k0n0

Wk0kðk; k0; n	 n0Þ

� xn0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

n0 þ Dðk0; ixn0 Þ2
q ; ð6Þ

Zðk; ixnÞDðk; ixnÞ

¼ pT
X
k0n0

Wk0 ½kðk; k0; n	 n0Þ 	 l�ðxcÞ�

� Dðk0; ixn0 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

n0 þ Dðk0; ixn0 Þ2
q ; ð7Þ

where the sum over the integer n0 is truncated by a

condition jxn0 j < xc for a given cutoff frequency

xc. The dimensionless Coulomb pseudopotential

l�ðxÞ is defined by l�ðxÞ ¼ l=ð1þ l lnð�F=xÞÞ. At

low enough temperature, Eqs. (6) and (7) have

nonzero solution for Dðk; ixnÞ. As the temperature

rises, the size of Dðk; ixnÞ decreases. The transition
temperature is the temperature that Dðk; ixnÞ be-

comes zero.

In order to determine the superconducting

energy gap, we need the gap function Dðk;xÞ for

real frequency x. This function can be obtained by

an iterative analytic continuation [27] using

xZðk;xÞ

¼ x þ ipT
X
k0;n

Wk0kðk; k0;x 	 ixnÞ

� xnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

n þ Dðk0; ixnÞ2
q þ ip

X
k0

Wk0

Z 1

	1
dx0

� a2F ðk; k0;x0ÞZðk0;x 	 x0Þðx 	 x0ÞCðx;x0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zðk0;x 	 x0Þ2½ðx 	 x0Þ2 	 Dðk0;x 	 x0Þ2�;

q

ð8Þ

Zðk;xÞDðk;xÞ
¼ pT

X
k0 ;n

Wk0 ½kðk; k0;x 	 ixnÞ 	 l�ðxcÞ�

� Dðk0; ixnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

n þ Dðk0; ixnÞ2
q þ ip

X
k0

Wk0

Z 1

	1
dx0

� a2F ðk; k0;x0ÞZðk0;x 	 x0ÞDðk0;x 	 x0ÞCðx;x0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zðk0;x 	 x0Þ2½ðx 	 x0Þ2 	 Dðk0;x 	 x0Þ2�

q
ð9Þ

where a2F ðk; k0;xÞ ¼ 	a2F ðk; k0;	xÞ for x < 0,

Cðx;x0Þ ¼ ðtanhððx 	 x0Þ=2T Þ þ cothðx0=2T ÞÞ=2,
and kðk;k0;x	 ixnÞ ¼ 	

R1
	1 dx0a2F ðk;k0x0Þ=ðx	

ixn 	 x0Þ. The square roots are chosen to have

positive imaginary parts. Once Dðk;xÞ is obtained,
it is straightforward to obtain the superconducting

gap and the quasiparticle density of states. The

superconducting gap DðkÞ on the Fermi surface is

the frequency x satisfying

x ¼ Re½Dðk;xÞ�: ð10Þ

The quasiparticle density of states NðxÞ for the

quasiparticle energy x is

NðxÞ ¼ Nð�FÞ

�
X
k

WkRe
ðx þ iCÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx þ iCÞ2 	 Dðk;xÞ2
q

2
64

3
75

ð11Þ
with an assumed finite lifetime C of the quasiparticle.

We calculate the specific heat from the free

energy. At temperature below Tc, the free energy

difference DF ¼ FS 	 FN between the supercon-
ducting and normal states [28] is

DF ¼ 	pTNð�FÞ
X
kn

Wk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

n þ Dðk; ixnÞ2
q�

	 jxnj


� Zðk; ixnÞ
�

	 ZN ðk; ixnÞjxnj
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
n þ Dðk; ixnÞ2

q 
; ð12Þ

where ZN ðk; ixnÞ are the values of Zðk; ixnÞ of Eq.
(6) with Dðk0; ixn0 Þ ¼ 0. Then, the specific heat

difference DC ¼ CS 	 CN between the supercon-

ducting and normal states is
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DC ¼ 	T
d2DF
dT 2

: ð13Þ

If we neglect all the k dependencies and the sum

over k in the above equations and formulas, we

obtain the isotropic Eliashberg formalism. If
the electron–phonon interaction did not depend

strongly on the electronic states on the Fermi sur-

face, the isotropic formalism would be an appro-

priate approximation.

3. Electronic and phononic structures and electron–

phonon interaction

The electronic structure of MgB2 is calculated

using ab initio pseudopotentials [23,24] with the

local density approximation to the density func-

tional theory. We used a 12� 12� 12 k-point grid
in the Brillouin zone (BZ) for self-consistent cal-

culations and a 18� 18� 12 grid for the Fermi

surface properties, and included planewaves up to
60 Ry as a basis to expand the electronic wave-

functions. The calculated equilibrium lattice con-

stants are a ¼ 3:071 �AA and c ¼ 3:578 �AA, in good

agreement with measured values [1]. Fig. 1 shows

the band structure of MgB2 along the symmetry

lines of the BZ. We have both r- and p-bonding
boron bands at the Fermi level. The Fermi surface

consists of four sheets; the r-bands form two
holelike coaxial cylinders along C to A line, and the

p-bands form a holelike tubular network near K
and M , and an electron like tubular network near

H and L. The density of states at the Fermi energy

is 0.12 states/eV atom spin, 44% of which comes

from the r-bonds and the other 56% comes from

the p-bonds.
Phonon frequencies and electron–phonon in-

teractions are obtained from the frozen phonon

calculations [25,26] at all the symmetry points of

the BZ. To account for the phonon anharmonicity,

the variation of the total energy with a frozen

phonon amplitude is fitted with a fourth order

polynomial, and then the energy difference of the

ground and the first excited vibrational state is
regarded as the anharmonic phonon frequency.

For the harmonic phonon frequency, we consi-

dered only the quadratic term of the fitted total-

energy curve. In the case of the doubly degenerate,

in-plane B–B stretching modes (E2g) at C and A, we
calculate the two-dimensional vibrational states

after the total energy is fitted in a plane with

Eðr;hÞ ¼ E0þ c2r2 þ c2r4þðc3r3 þ c5r5Þcosð3hÞ. We
use natural atomic weights for B and Mg, that

is, 10.81 for B and 24.31 for Mg. The electron–

phonon interaction is calculated from dV j
q as de-

scribed in Eq. (1). Phonon frequencies and dV j
q are

obtained in a 18� 18� 12 grid in the BZ by in-

terpolation [15]. All calculations are done twice for

comparison: one with harmonic phonon frequen-

cies and another with anharmonic phonon fre-
quencies. To study the isotope effect, we repeat the

entire procedure with an isotopic atomic mass.

Fig. 2 shows the phonon dispersion along the

symmetry lines of the BZ. Only the in-plane B–B

stretching modes (E2g) along the C to A line have

large anharmonicity. The calculated anharmonic

frequency, 75.9 meV, for the E2g mode at C agrees

very well with the results from Raman measure-
ments [29,30] as well as other theoretical calcula-

tions [13,14]. Fig. 3 shows the phonon density of

states F ðxÞ and the standard Eliashberg func-

tion a2F ðxÞ. The large dominant peak in a2F ðxÞ
at 63 meV in the harmonic case or 77 meV in

the anharmonic case arises from the E2g modes.

The E2g modes have large electron–phonon cou-

pling with the r-bonding boron bonds within a
small volume in k-space along the C to A line,

within the harmonic approximation, the isotropic
Fig. 1. Electronic structure of MgB2. Inset: BZ of the simple

hexagonal structure.
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average electron–phonon coupling constant, k ¼
2
R
dxa2F ðxÞ=x, is 0.73 and the logarithmic

average frequency, xln ¼ exp½ð2=kÞ
R
dxa2F ðxÞ

lnx=x�, is 59.4 meV. With anharmonicity, k is

reduced to 0.61 and xln is increased to 63.5 meV.

The reduced value of k ¼ 0:61 due to anharmo-

nicity corresponds to cN ¼ 2:6 mJ/molK2 in our

calculation. This value agrees very well with result

from specific heat measurements [4,5], showing

that the electron–phonon interaction is weakened

by phonon anharmonicity in MgB2. This value of

k ¼ 0:61 is too small to explain a Tc of 39 K using

either the McMillan [31] or the Allen-Dynes [32]

formula. This will be discussed further in the next
section.

Fig. 4 shows the variation of the calculated

electron–phonon interaction on the Fermi surface.

The mass enhancement factor kðk; n ¼ 0Þ for states
at k in Fig. 4(a) shows two well-separated sets of

values: about 0.8–1.0 on the r sheets and about

0.3–0.5 on the p sheets. For more detail, we depict

in Fig. 4(b) the values of kðk ¼ k0; k
0; n ¼ 0Þ as a

function of k0 for a fixed k ¼ k0 on the Fermi

surface near C. The interaction function kðk; k0; nÞ
defined by Eq. (3) represents the strength for a pair

of electrons at states k and )k scattering to k0 and

	k0 by phonon exchange. The plot in Fig. 4(b)

shows strong and varying strength for scattering

from the r sheets onto the r sheets but rather

weak strength for scattering to the p sheets. Fig. 5
shows the number density of ðk; k0Þ pairs on the

Fermi surface plotted as a function of the value of

kðk; k0; n ¼ 0Þ. The coupling strength kðk; k0; n ¼ 0Þ

Fig. 2. Calculated phonon dispersion in MgB2. Solid lines

represent the anharmonic phonon frequencies which are ob-

tained from the energy difference of the ground and the first

excited state of the atomic vibrations. Dotted lines represent the

standard harmonic phonon frequencies. The frequencies are

obtained along the symmetry lines by interpolation from the

exact results at the symmetry points. For more precise disper-

sions in between the symmetry points in the harmonic case, see

Refs. [17,18].

Fig. 4. Variation of the electron–phonon interaction k on the

Fermi surface of MgB2. (a) The mass enhancement factor

kðk; n ¼ 0Þ is shown in a gray scale and (b) the electron–phonon

interaction function kðk ¼ k0; k
0; n ¼ 0Þ is given in a gray scale

as a function of k0 for a fixed k0 on the Fermi surface near C.
(After Ref. [15].)

Fig. 3. Phonon density of states F ðxÞ and the isotropic Eli-

ashberg function a2F ðxÞ for MgB2. (After Ref. [15].)
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between states on the r sheets has values exceeding

2.0 which is much larger than those within the p
sheets or between a r sheet and a p sheet. This

strong variation of electron–phonon interaction in

MgB2 can be considered properly with the aniso-

tropic Eliashberg formalism of the previous sec-

tion.

4. Transition temperature and isotope effect

We calculate the transition temperature of MgB2

from the fully anisotropic Eliashberg equations.

The anisotropic Eliashberg equations at the imag-

inary frequency, Eqs. (6) and (7), are constructed

and the transition temperature is calculated as
described in Section 2. The cutoff frequency xc is

set to 0.5 eV which is about six times larger than the

maximum phonon frequency. With the exception

of l�ðxcÞ, our calculation of the phonon frequen-

cies and electron–phonon interaction provides all

the material parameters for the Eliashberg equa-

tion. We use the anharmonic phonon frequencies

defined in Sections 2 and 3 for the phonon fre-
quencies xj

q in the equations. The dimensionless

Coulomb pseudopotential l�ðxÞ is known to be

of order 0.1 in most metals when x is a relevant

phonon frequency [22,31,33].

The obtained transition temperature is in the

range of 42 KP Tc P 37 K for 0:106 l�ðxcÞ6

0:14. In particular, Tc is 39 K when l�ðxcÞ ¼ 0:12.
This value of l�ðxcÞ ¼ 0:12 corresponds to

l�ðxlnÞ ¼ 0:10 with xln ¼ 63:5 meV obtained in

Section 3. For comparison, if we neglect the an-

isotropy and calculate Tc with the isotropic Eli-

ashberg equations, Tc drops to 19 K. This shows
clearly that the strong variation in the electron–

phonon coupling on the Fermi surface is crucial to

the observed high Tc in MgB2. In MgB2, therefore,

an average electron–phonon coupling k cannot be

correctly determined from Tc using the McMillan

[31] or Allen-Dynes formulas [32] because these

formulas are based on the isotropic Eliashberg

equations. However, a determination of k from the
specific heat measurement is still valid. This ex-

plains the apparent discrepancy between the values

of k estimated from specific heat measurements

and k estimated from Tc using simplified isotropic

models.

To calculate the isotope-effect exponent a ðTc /
M	aÞ, we recalculate Tc using the mass of either 10B

or 26Mg in place of the natural atomic weight. We
obtain aB ¼ 0:32 and aMg ¼ 0:03 from the aniso-

tropic Eliashberg equation with anharmonic pho-

non frequencies. These values are very close to

the experimental values aB ¼ 0:26–0.30 and aMg ¼
0:02 [2,3]. Without anharmonicity, we obtain aB ¼
0:46 and aMg ¼ 0:02. Hence, the anomalously low

isotope-effect exponent is primarily due to phonon

anharmonicity.

5. Superconducting energy gap, quasiparticle spec-

tra, and specific heat

We solve the anisotropic Eliashberg equations,

Eqs. (6) and (7), at low temperature, and obtain

the gap function Dðk;xÞ for real frequency x using

Eqs. (8) and (9). The superconducting energy gap

DðkÞ on the Fermi surface is then calculated by Eq.

(10). Fig. 6 shows the calculated superconducting

energy gap DðkÞ at 4 K. When calculating the
energy gap, we did not make any assumption on

its functional shape on the Fermi surface. The re-

sulting superconducting energy gap is nodeless and

always of the same sign, but the size of the gap

changes greatly on the different pieces of the Fermi

surface. The magnitude of the energy gap at 4 K

Fig. 5. Number density of ðk; k0Þ pairs on the Fermi surface

versus the value of kðk;k0; n ¼ 0Þ. The number density is split

into three sets: both k and k0 are on the two r cylindrical sheets

of the Fermi surface (––), both on the two p tubular sheets (- - -),

and one on a r cylindrical sheet and the other on a p tubular

sheet (� � �). (After Ref. [15].)
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ranges from 6.4 to 7.2 meV on the r sheets, and

from 1.2 to 3.7 meV on the p sheets. The average

values of the gap are 6.8 meV for the r sheets and

1.8 meV for the p sheets. Our result is consistent

with the recent experiments reporting two gaps

[4,5,7–10,34,35]. The variation of the supercon-

ducting energy gap on the Fermi surface is directly
measurable by techniques such as high resolution

angle-resolved photoelectron spectroscopy.

Fig. 6(c) shows a local gap distribution defined

by qðr;DÞ ¼ RkjwkðrÞj
2dðD 	 DðkÞÞ, where wkðrÞ is

the electron wave function with crystal momentum

k. Since the r-bonding states are confined to the

boron planes, the strong pairing gap of around 6.8

meV is associated with these planes. In tunneling
experiments along the c-axis, the small gaps should

be seen preferentially, as indicated in some recent

measurements [8,10].

The superconducting energy gap is calculated at

various temperatures. Fig. 7(a) shows the distri-

bution of the energy gap values. Vertical solid

curves represent the distribution of the super-
conducting gap values at various temperatures

from 4 to 38 K. Dashed curves are of the form

DðT Þ ¼ Dð0Þð1	 ðT=TcÞpÞ1=2 fitted separately to the

calculated average energy gap of the r-bonding
states and that of the p-bonding states. For the r-
bonding states, Dð0Þ ¼ 6:8 meV ð2Dð0Þ=kBTc ¼
4:0Þ and p ¼ 2:9. For the p-bonding states, Dð0Þ ¼
1:8 meV ð2Dð0Þ=kBTc ¼ 1:06Þ and p ¼ 1:8. Thus,
the energy gap of the r-bonding states and that of

the p-bonding states show different temperature

dependence. Compared with the small energy gap

of the p-bonding states, the large energy gap of the

r-bonding states changes more slowly at low

temperature, but more rapidly near the transition

temperature. Both the p and r gaps vanish at the

same transition temperature although their values
are greatly different at low temperature [36]. This

temperature dependence of the superconducting

energy gaps agree with recent tunneling, optical,

and specific heat measurements [4,5,7–10,34].

Fig. 7(b) shows the quasiparticle density of states

calculated with Eq. (11) and an assumed finite

lifetime C of 0.1 meV. Since the energy gap differs

considerably for the r- and p-bonding states in
MgB2, the density of quasiparticle excitations as a

function of energy shows two thresholds: one

for quasiparticle excitations of p-bonding states

and the other for those of r-bonding states. The

quasiparticle density of states can be deduced

experimentally from tunneling experiments and

Fig. 6. The superconducting energy gap of MgB2. (a) The su-

perconducting energy gap on the Fermi surface at 4 K is given

in a gray scale, (b) the distribution of gap values at 4 K and (c)

local distribution of the superconducting energy gap is plotted

on a boron plane and on planes at 0.05, 0.10, and 0.18 nm

above a boron plane, respectively. (After Ref. [19].)

Fig. 7. Calculated temperature dependence of (a) the superconducting gaps and (b) the quasiparticle density of states. (After Ref. [19].)
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various spectroscopic measurements [8–10,34], but

a direct quantitative comparison requires knowl-

edge of various physical parameters involved in a
specific experiment.

We calculate the specific heat of the supercon-

ducting state from the free energy [28] using Eqs.

(12) and (13). Fig. 8 shows the measured and cal-

culated electronic contribution to the specific heat

of MgB2 as a function of temperature. The mea-

sured specific heat [4,5,7] of MgB2 at low temper-

ature is substantial and a large hump appears at
about 10 K which is inconsistent with a 1-gap BCS

model. As shown in Fig. 8, the overall shape and

magnitude of our calculated specific heat curve

agrees very well with the experimental data, espe-

cially below 30 K. We find that the low tempera-

ture hump in our calculated curve and in the

experimental data is caused by the existence of low

energy excitations across the small superconduct-
ing energy gap of the p-bonding states.

6. Conclusion

We have shown that in MgB2 the anisotropy of

the electron–phonon interaction on the Fermi

surface is strong enough to raise Tc to 39 K even

though the interaction is weakened by the anhar-

monicity of the phonons as compared to the har-

monic case. The boron isotope-effect exponent aB

is reduced from almost 0.5 to 0.32 because of the

anharmonicity of the phonons. The size of super-

conducting energy gap varies strongly on the
Fermi surface so that the gap values DðkÞ cluster

into two groups––a small value of �2 meV and a

large value of �7 meV. This large variation of the

superconducting energy gap produces anomalies

in the quasiparticle density of states and the spe-

cific heat of the superconducting states. Our study

shows that the phonon-mediated electron pairing

theory describes the superconductivity in MgB2

successfully as long as both the anisotropy of the

electron–phonon interaction and the anharmo-

nicity of the phonons are properly taken into

account. With the success of the anisotropic Eli-

ashberg theory presented here, we expect that a

proper extension of the theory with applied mag-

netic field will describe the magnetic properties of

MgB2 successfully.
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